Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.587
1.
Microbiome ; 12(1): 81, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715147

BACKGROUND: After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. RESULTS: To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. CONCLUSIONS: DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. Video Abstract.


DNA Transposable Elements , Microbiota , Rhizosphere , Plasmids/genetics , Plant Roots/microbiology , Proteobacteria/genetics , Flow Cytometry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Soil Microbiology
2.
Methods Mol Biol ; 2787: 305-313, 2024.
Article En | MEDLINE | ID: mdl-38656499

Bimolecular fluorescence complementation (BiFC) is a powerful tool for studying protein-protein interactions in living cells. By fusing interacting proteins to fluorescent protein fragments, BiFC allows visualization of spatial localization patterns of protein complexes. This method has been adapted to a variety of expression systems in different organisms and is widely used to study protein interactions in plant cells. The Agrobacterium-mediated transient expression protocol for BiFC assays in Nicotiana benthamiana (N. benthamiana) leaf cells is widely used, but in this chapter, a method for BiFC assay using Arabidopsis thaliana protoplasts is presented.


Arabidopsis , Plant Leaves , Protoplasts , Arabidopsis/metabolism , Arabidopsis/genetics , Protoplasts/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Protein Interaction Mapping/methods , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Microscopy, Fluorescence/methods , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Nicotiana/metabolism , Nicotiana/genetics , Protein Binding , Agrobacterium/genetics , Agrobacterium/metabolism
3.
J Virol ; 98(5): e0003224, 2024 May 14.
Article En | MEDLINE | ID: mdl-38651900

Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.


Herpes Simplex , Herpesvirus 1, Human , Luminescent Proteins , Neurons , Virus Replication , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Neurons/virology , Neurons/metabolism , Humans , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Herpes Simplex/virology , Genes, Reporter , Virus Latency/genetics , Gene Expression Regulation, Viral , Chlorocebus aethiops , Vero Cells , Cytomegalovirus/genetics , Cytomegalovirus/physiology
4.
Methods Mol Biol ; 2757: 269-287, 2024.
Article En | MEDLINE | ID: mdl-38668972

Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.


Calcium , Ctenophora , Escherichia coli , Imidazoles , Luminescent Proteins , Ctenophora/genetics , Ctenophora/metabolism , Calcium/metabolism , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Gene Expression , Cloning, Molecular/methods , Pyrazines/metabolism
5.
Methods Mol Biol ; 2757: 289-306, 2024.
Article En | MEDLINE | ID: mdl-38668973

The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.


Cloning, Molecular , Ctenophora , DNA, Complementary , Gene Library , Luminescent Proteins , Animals , Ctenophora/genetics , Ctenophora/metabolism , Cloning, Molecular/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
6.
Commun Biol ; 7(1): 473, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637683

Bacterial phytochromes are attractive molecular templates for engineering fluorescent proteins (FPs) because their near-infrared (NIR) emission significantly extends the spectral coverage of GFP-like FPs. Existing phytochrome-based FPs covalently bind heme-derived tetrapyrrole chromophores and exhibit constitutive fluorescence. Here we introduce Rep-miRFP, an NIR imaging probe derived from bacterial phytochrome, which interacts non-covalently and reversibly with biliverdin chromophore. In Rep-miRFP, the photobleached non-covalent adduct can be replenished with fresh biliverdin, restoring fluorescence. By exploiting this chromophore renewal capability, we demonstrate NIR PAINT nanoscopy in mammalian cells using Rep-miRFP.


Microscopy , Phytochrome , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Bacterial Proteins/metabolism , Biliverdine/metabolism , Bacteria/metabolism , Mammals
7.
Sci Rep ; 14(1): 8754, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627478

Wild-type SAASoti and its monomeric variant mSAASoti can undergo phototransformations, including reversible photoswitching of the green form to a nonfluorescent state and irreversible green-to-red photoconversion. In this study, we extend the photochemistry of mSAASoti variants to enable reversible photoswitching of the red form. This result is achieved by rational and site-saturated mutagenesis of the M163 and F177 residues. In the case of mSAASoti it is M163T substitution that leads to the fastest switching and the most photostable variant, and reversible photoswitching can be observed for both green and red forms when expressed in eukaryotic cells. We obtained a 13-fold increase in the switching efficiency with the maximum switching contrast of the green form and the appearance of comparable switching of the red form for the C21N/M163T mSAASoti variant. The crystal structure of the C21N mSAASoti in its green on-state was obtained for the first time at 3.0 Å resolution, and it is in good agreement with previously calculated 3D-model. Dynamic network analysis reveals that efficient photoswitching occurs if motions of the 66H residue and phenyl fragment of chromophore are correlated and these moieties belong to the same community.


Coloring Agents , Luminescent Proteins/genetics , Luminescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Mutagenesis , Photochemistry
8.
Biochem Biophys Res Commun ; 709: 149836, 2024 May 21.
Article En | MEDLINE | ID: mdl-38564937

Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.


Mitochondria , Mitochondrial Membranes , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , HeLa Cells
9.
Methods Mol Biol ; 2797: 261-269, 2024.
Article En | MEDLINE | ID: mdl-38570466

Fluorescence lifetime imaging performed under FRET conditions between two interacting molecules is a sensitive and robust way to quantify intermolecular interactions in cells. The fluorescence lifetime, an inherent property of the fluorophore, remains unaffected by factors such as concentration, laser intensity, and other photophysical artifacts. In the context of FLIM-FRET, the focus lies on measuring the fluorescence lifetime of the donor molecule, which diminishes upon interaction with a neighboring acceptor molecule. In this study, we present a step-by-step experimental protocol for applying FLIM-FRET to investigate protein-protein interactions involving various RAS isoforms and RAS effectors at the live cell's plasma membrane. By utilizing the FRET pair comprising enhanced green fluorescent protein (eGFP) and fluorescent mCherry, we demonstrate that the proximity and possible nanoclustering of eGFP-tagged KRAS4b G12D and mCherry-tagged KRAS4b WT led to a reduction in the donor eGFP's fluorescence lifetime. The donor lifetime of eGFP-tagged KRAS decreases even further when treated with a dimer-inducing small molecule, or in the presence of RAF proteins, suggesting a greater FRET efficiency, and thus less distance, between donor and acceptor.


Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Green Fluorescent Proteins/genetics
10.
Commun Biol ; 7(1): 394, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561421

Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.


Diagnostic Imaging , Genetic Techniques , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Coloring Agents , Mammals/genetics
11.
Mol Biol Cell ; 35(6): ar86, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38656813

Microtubules rely on dynamic assembly and disassembly for their functions. Increasing evidences support that the damage-repair of microtubule lattices can affect microtubule dynamics in vitro and in animal cells. Here we successfully established a way for visualizing damage-repair sites on microtubule lattices in plant cells, via labeling the tubulin proteins with the photoconvertible fluorescent protein mEOS3.2. We observed that the crossovers of the microtubule lattice were more prone to be damaged and repaired, with the frequency of damage-repair events positively correlated with the crossing angle between microtubules. The microtubules with damage-repair events displayed shorter lifespans and significantly increased severing frequency compared with the undamaged microtubules. These observations suggested that the damage-repair events promoted instability of cortical microtubules in plant cells.


Arabidopsis Proteins , Arabidopsis , Microtubules , Tubulin , Microtubules/metabolism , Arabidopsis/metabolism , Tubulin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Luminescent Proteins/metabolism , Luminescent Proteins/genetics
12.
DNA Res ; 31(2)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38494174

The Genji firefly, Nipponoluciola cruciata, is an aquatic firefly endemic to Japan, inhabiting a wide area of the Japanese archipelago. The luminescence of fireflies is a scientifically interesting phenomenon, and many studies have evaluated this species in Japan. In this study, we sequenced the whole genome of male N. cruciata and constructed a high-quality genome assembly of 662 Mb with a BUSCO completeness of 99.1% in the genome mode. Using the detected set of 15,169 protein-coding genes, the genomic structures and genetic background of luminescence-related genes were also investigated. We found four new firefly luciferase-like genes in the genome. The highest bioluminescent activity was observed for LLa2, which originated from ancestral PDGY, a mitochondrial acyl-CoA synthetase. A thioesterase candidate, NcruACOT1, which is involved in d-luciferin biosynthesis, was expressed in the lantern. Two opsins were also detected and the absorption wavelength of the UV-type opsin candidate shifted from UV to blue. These findings provide an important resource for unravelling the adaptive evolution of fireflies in terms of luminescence and vision.


Fireflies , Peroxisomal Targeting Signals , Male , Animals , Fireflies/genetics , Fireflies/metabolism , Peroxisomal Targeting Signals/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Luciferases/genetics , Luciferases/metabolism , Base Sequence
13.
Luminescence ; 39(3): e4707, 2024 Mar.
Article En | MEDLINE | ID: mdl-38497361

We used site-specific mutagenesis by targeting E179 and F190 on the structure of photoprotein Mnemiopsin 2 (Mn2) from Mnemiopsis leidyi. The tertiary structure of E179S and F190L mutants was made by the MODELLER program. Far-ultraviolet circular dichroism data showed that the overall secondary structural content of photoprotein is not changed upon mutation, however the helicity and stabilizing interactions in helical structure decreases in mutants as compared with the wild-type (WT) photoprotein. Fluorescence spectra data revealed that the tertiary structure of the mutants is more compact than that of WT Mn2. According to the heat-induced denaturation experiments data, the melting temperature (Tm ) for the unfolding of tertiary structure of the F190L variant increases by 3°C compared with that of the WT and E179S mutant. Interestingly, the conformational enthalpy of the F190L mutant (86 kcal mol-1 ) is considerably lower than those in the WT photoprotein (102 kcal mol-1 ) and E179S mutant (106 kcal mol-1 ). The significant difference in the enthalpy of the thermal unfolding process could be explained by considering that the thermally denatured state of the F190L mutant is structurally less expanded than the WT and E179S variants. Bioluminescence activity data showed that the maximum characteristic wavelengths of the mutants undergo blue shift as compared with the WT protein. Initial intensity of the F190L and E179S variants was recorded to be 137.5% and 55.9% of the WT protein, respectively.


Calcium , Calcium/chemistry , Mutagenesis, Site-Directed , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Circular Dichroism , Thermodynamics , Protein Denaturation
14.
Plant Cell Environ ; 47(6): 2011-2026, 2024 Jun.
Article En | MEDLINE | ID: mdl-38392921

Crispr/CAS9-enabled homologous recombination to insert a tag in frame with an endogenous gene can circumvent difficulties such as context-dependent promoter activity that complicate analysis of gene expression and protein accumulation patterns. However, there have been few reports examining whether such gene targeting/gene tagging (GT) can alter expression of the target gene. The enzyme encoded by Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) is key for stress-induced proline synthesis and drought resistance, yet its expression pattern and protein localisation have been difficult to assay. We used GT to insert YFP in frame with the 5' or 3' ends of the endogenous P5CS1 and At14a-Like 1 (AFL1) coding regions. Insertion at the 3' end of either gene generated homozygous lines with expression of the gene-YFP fusion indistinguishable from the wild type allele. However, for P5CS1 this occurred only after selfing and advancement to the T5 generation allowed initial homozygous lethality of the insertion to be overcome. Once this was done, the GT-generated P5CS1-YFP plants revealed new information about P5CS1 localisation and tissue-specific expression. In contrast, insertion of YFP at the 5' end of either gene blocked expression. The results demonstrate that GT can be useful for functional analyses of genes that are problematic to properly express by other means but also show that, in some cases, GT can disrupt expression of the target gene.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Mutagenesis, Insertional/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
G3 (Bethesda) ; 14(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38366837

A simple, broadly applicable method was developed using an in vitro transposition reaction followed by transformation into Escherichia coli and screening plates for fluorescent colonies. The transposition reaction catalyzes the random insertion of a fluorescent protein open reading frame into a target gene on a plasmid. The transposition reaction is employed directly in an E. coli transformation with no further procedures. Plating at high colony density yields fluorescent colonies. Plasmids purified from fluorescent colonies contain random, in-frame fusion proteins into the target gene. The plate screen also results in expressed, stable proteins. A large library of chimeric proteins was produced, which was useful for downstream research. The effect of using different fluorescent proteins was investigated as well as the dependence of the linker sequence between the target and fluorescent protein open reading frames. The utility and simplicity of the method were demonstrated by the fact that it has been employed in an undergraduate biology laboratory class without failure over dozens of class sections. This suggests that the method will be useful in high-impact research at small liberal arts colleges with limited resources. However, in-frame fusion proteins were obtained from 8 different targets suggesting that the method is broadly applicable in any research setting.


Escherichia coli , Mutagenesis, Insertional , Recombinant Fusion Proteins , Escherichia coli/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Plasmids/genetics , Open Reading Frames , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
16.
Chembiochem ; 25(9): e202300814, 2024 May 02.
Article En | MEDLINE | ID: mdl-38356332

Flavin-based fluorescent proteins are oxygen-independent reporters that hold great promise for imaging anaerobic and hypoxic biological systems. In this study, we explored the feasibility of applying circular permutation, a valuable method for the creation of fluorescent sensors, to flavin-based fluorescent proteins. We used rational design and structural data to identify a suitable location for circular permutation in iLOV, a flavin-based reporter derived from A. thaliana. However, relocating the N- and C-termini to this position resulted in a significant reduction in fluorescence. This loss of fluorescence was reversible, however, by fusing dimerizing coiled coils at the new N- and C-termini to compensate for the increase in local chain entropy. Additionally, by inserting protease cleavage sites in circularly permuted iLOV, we developed two protease sensors and demonstrated their application in mammalian cells. In summary, our work establishes the first approach to engineer circularly permuted FbFPs optimized for high fluorescence and further showcases the utility of circularly permuted FbFPs to serve as a scaffold for sensor engineering.


Flavins , Luminescent Proteins , Flavins/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Humans , Protein Engineering , Arabidopsis/chemistry , HEK293 Cells
18.
Nat Commun ; 14(1): 8402, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38114484

Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400-650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.


Fluorescent Dyes , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , HeLa Cells
19.
Biotechniques ; 75(6): 250-255, 2023 12.
Article En | MEDLINE | ID: mdl-37880975

Fluorescent proteins, such as green fluorescent proteins, are invaluable tools for detecting and quantifying gene expression in high-throughput reporter gene assays. However, they introduce significant inaccuracies in studies involving microaerobiosis or anaerobiosis, as oxygen is required for the maturation of these proteins' chromophores. In this study, the authors highlight the errors incurred by using fluorescent proteins under limited oxygenation by comparing standard fluorescence-based reporter gene assays to quantitative real-time PCR data in the study of a complex oxygen-regulated gene network. Furthermore, a solution to perform quantification of anaerobic and microaerobic gene expression with fluorescent reporter proteins using a microplate reader with an oxygen control system and applying pulses of full oxygenation before fluorescence measurements is provided.


Oxygen , Anaerobiosis , Genes, Reporter/genetics , Green Fluorescent Proteins/analysis , Indicators and Reagents , Gene Expression , Oxygen/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism
20.
Mar Biotechnol (NY) ; 25(6): 1099-1109, 2023 Dec.
Article En | MEDLINE | ID: mdl-37864761

The marine environment is a rich reservoir of diverse biological entities, many of which possess unique properties that are of immense value to biotechnological applications. One such example is the red fluorescent protein derived from the coral Discosoma sp. This protein, encoded by the DsRed gene, has been the subject of extensive research due to its potential applications in various fields. In the study, a variant of the red fluorescent protein was generated through random mutagenesis using the DsRed2 gene as a template. The process employed error-prone PCR (epPCR) to introduce random mutations, leading to the isolation of twelve gene variants. Among these, one variant stood out due to its unique spectral properties, exhibiting dual fluorescence emission at both 480 nm (green) and 550 nm (red). This novel variant was expressed in both Escherichia coli and zebrafish (Danio rerio) muscle, confirming the dual fluorescence emission in both model systems. One of the immediate applications of this novel protein variant is in ornamental aquaculture. The dual fluorescence can serve as a unique marker or trait, enhancing the aesthetic appeal of aquatic species in ornamental settings.


Anthozoa , Red Fluorescent Protein , Animals , Fluorescence , Zebrafish/genetics , Zebrafish/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Anthozoa/genetics , Anthozoa/metabolism , Biotechnology , Green Fluorescent Proteins
...